Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models

نویسندگان

  • Raphael F. Ribeiro
  • Aleksandr V. Marenich
  • Christopher J. Cramer
  • Donald G. Truhlar
چکیده

We applied the solvation models SM8, SM8AD, and SMD in combination with the Minnesota M06-2X density functional to predict vacuum-water transfer free energies (Task 1) and tautomeric ratios in aqueous solution (Task 2) for the SAMPL2 test set. The bulk-electrostatic contribution to the free energy of solvation is treated as follows: SM8 employs the generalized Born model with the Coulomb field approximation, SM8AD employs the generalized Born approximation with asymmetric descreening, and SMD solves the nonhomogeneous Poisson equation. The non-bulk-electrostatic contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell is treated as a sum of terms that are products of geometry-dependent atomic surface tensions and solvent-accessible surface areas of the individual atoms of the solute. On average, three models tested in the present work perform similarly. In particular, we achieved mean unsigned errors of 1.3 (SM8), 2.0 (SM8AD), and 2.6 kcal/mol (SMD) for the aqueous free energies of 30 out of 31 compounds with known reference data involved in Task 1 and mean unsigned errors of 2.7 (SM8), 1.8 (SM8AD), and 2.4 kcal/mol (SMD) in the free energy differences (tautomeric ratios) for 21 tautomeric pairs in aqueous solution involved in Task 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistryw

We present M06-2X density functional calculations of the chloroform/water partition coefficients of cytosine, thymine, uracil, adenine, and guanine and calculations of the free energies of association of selected unsubstituted and alkylated nucleotide base pairs in chloroform and water. Both hydrogen bonding and p–p stacking interactions are considered. Solvation effects are treated using the c...

متن کامل

The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistry.

We present M06-2X density functional calculations of the chloroform/water partition coefficients of cytosine, thymine, uracil, adenine, and guanine and calculations of the free energies of association of selected unsubstituted and alkylated nucleotide base pairs in chloroform and water. Both hydrogen bonding and π-π stacking interactions are considered. Solvation effects are treated using the c...

متن کامل

Performance of SM8 on a Test To Predict Small-Molecule Solvation Free Energies

The SM8 quantum mechanical aqueous continuum solvation model is applied to a 17-molecule test set proposed by Nicholls et al. (J. Med. Chem. 2008, 51, 769) to predict free energies of solvation. With the M06-2X density functional, the 6-31G(d) basis set, and CM4M charge model, the root-mean-square error (RMSE) of SM8 is 1.08 kcal mol(-1) for aqueous geometries and 1.14 kcal mol(-1) for gas-phas...

متن کامل

Prediction of accurate pKa values of some α-substituted carboxylic acids with low cost of computational methods

The acidity constants (pKa) of thirty four (34) ;-substituted carboxylic acids in aqueous solution havebeen calculated using conductor-like polarizable continuum (C-PCM) solvation model. The gasphaseenergies at the Density Functional Theory (DFT-MPW1PW91) and solvation energies atHartree Fock (HF) are combined to estimate the pKa values which are very close to the experimentalvalues where, and ...

متن کامل

Rapid prediction of solvation free energy. 3. Application to the SAMPL2 challenge

The SAMPL2 hydration free energy blind prediction challenge consisted of a data set of 41 molecules divided into three subsets: explanatory, obscure and investigatory, where experimental hydration free energies were given for the explanatory, withheld for the obscure, and not known for the investigatory molecules. We employed two solvation models for this challenge, a linear interaction energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computer-aided molecular design

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2010